Application of LogitBoost Classifier for Traceability Using SNP Chip Data.
نویسندگان
چکیده
Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability.
منابع مشابه
S Tudents ’ P Erformance P Rediction S Ystem Using M Ulti a Gent Data M Ining T Echnique
A high prediction accuracy of the students’ performance is more helpful to identify the low performance students at the beginning of the learning process. Data mining is used to attain this objective. Data mining techniques are used to discover models or patterns of data, and it is much helpful in the decision-making. Boosting technique is the most popular techniques for constructing ensembles ...
متن کاملUsing LogitBoost classifier to predict protein structural classes.
Prediction of protein classification is an important topic in molecular biology. This is because it is able to not only provide useful information from the viewpoint of structure itself, but also greatly stimulate the characterization of many other features of proteins that may be closely correlated with their biological functions. In this paper, the LogitBoost, one of the boosting algorithms d...
متن کاملLogitboost of Multinomial Bayesian Classifier for Text Classification
Automated text classification has been considered as a vital method to manage and process a vast amount of documents in digital forms that are widespread and continuously increasing. In general, text classification plays an important role in information extraction and summarization, text retrieval, and question-answering. The Multinomial Bayesian Classifier has traditionally been a focus of res...
متن کاملLogitboost of Simple Bayesian Classifier
The ensembles of simple Bayesian classifiers have traditionally not been a focus of research. The reason is that simple Bayes is an extremely stable learning algorithm and most ensemble techniques such as bagging is mainly variance reduction techniques, thus not being able to benefit from its integration. However, simple Bayes can be effectively used in ensemble techniques, which perform also b...
متن کاملAOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem
This paper presents an improvement to model learning when using multi-class LogitBoost for classification. Motivated by the statistical view, LogitBoost can be seen as additive tree regression. Two important factors in this setting are: 1) coupled classifier output due to a sum-to-zero constraint, and 2) the dense Hessian matrices that arise when computing tree node split gain and node value fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 10 10 شماره
صفحات -
تاریخ انتشار 2015